A projected Hessian matrix for full waveform inversion
نویسنده
چکیده
A Hessian matrix in full waveform inversion (FWI) is difficult to compute directly because of high computational cost and an especially large memory requirement. Therefore, Newton-like methods are rarely feasible in realistic large-size FWI problems. We modify the quasi-Newton BFGS method to use a projected Hessian matrix that reduces both the computational cost and memory required, thereby making a quasi-Newton solution to FWI feasible.
منابع مشابه
A projected Hessian for full waveform inversion
A Hessian matrix in full waveform inversion (FWI) is difficult to compute directly because of high computational cost and an especially large memory requirement. Therefore, Newton-like methods are rarely feasible in realistic largesize FWI problems. We modify the BFGS method to use a projected Hessian matrix that reduces both the computational cost and memory required, thereby making a quasiNew...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملSecond-order adjoint state methods for Full Waveform Inversion
Full Waveform Inversion (FWI) applications classically rely on efficient first-order optimization schemes, as the steepest descent or the nonlinear conjugate gradient optimization. However, second-order information provided by the Hessian matrix is proven to give a useful help in the scaling of the FWI problem and in the speed-up of the optimization. In this study, we propose an efficient matri...
متن کاملApproximate inversion of the wave-equation Hessian via randomized matrix probing
We present a method for approximately inverting the Hessian of full waveform inversion as a dip-dependent and scaledependent amplitude correction. The terms in the expansion of this correction are determined by least-squares fitting from a handful of applications of the Hessian to random models — a procedure called matrix probing. We show numerical indications that randomness is important for g...
متن کاملDiscretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کامل